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A two-dimensional (2D) fully frustrated XY (FEXY) class of models is shown to contain a different ground
state in addition to the checkerboard ground states of the standard 2D FEXY model. The spin configuration of
this additional ground state is obtained. Associated with this ground state there are additional phase transitions.
An order parameter accounting for these transitions is proposed. The transitions associated with this order
parameter are suggested to be similar to a 2D liquid-gas transition which implies Z, Ising-type transitions. This
suggests that the class of 2D FFXY models belongs within a U(1) ® Z, ® Z, designation of possible transitions,
which implies that there are seven different possible single and combined transitions. Monte Carlo (MC)
simulations for the generalized fully frustrated XY model on a square lattice are used to investigate which of
these possibilities can be realized in practice: five of the seven are encountered. Four critical points are deduced
from the MC simulations: three are consistent with central charge ¢=3/2 and one is consistent with c=1. The
implications for the standard 2D FFXY model are discussed in particular with respect to the long-standing
controversy concerning the characteristics of its phase transitions.
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I. INTRODUCTION

The two-dimensional (2D) fully frustrated XY (FFXY)
model describes a 2D Josephson-junction array in a per-
pendicular magnetic field with the strength of the magnetic
field corresponding to one magnetic-flux quanta for every
second plaquette of the array. The phase transitions of this
model on a square lattice have been the subject of a long
controversy.'™® The emerging canonical picture is that the
model has two relevant phase ordering symmetries: an angu-
lar 24(1) symmetry and a Z,-chirality symmetry.>~'! As a con-
sequence, the model has often been assumed to belong
within the designation U(1)®Z,.>*!12 The controversial
questions have been: does the model undergo a single com-
bined transition or two separate transitions, and if the latter,
in which order do the transitions occur? The emerging con-
sensus is two separate transitions: as the temperature is in-
creased first a Kosterlitz-Thouless (KT) transition associated
with the angular (1) symmetry and then at a slightly higher
temperature a Z,-chirality transition.! The cause of the con-
troversy can, retrospectively, be attributed to the fact that the
two transitions are extremely close in temperature.

We generalize here the 2D FFXY model into a wider 2D
FEXY class of models by changing the nearest-neighbor in-
teraction in such a way as to keep all symmetries. This gen-
eralized 2D FFXY class is shown to contain an additional
ground state. The existence of this additional ground state
leads to a phase diagram containing four sectors.!> We show
here that it has seven different phase-transition lines and four
multicritical points. We use Monte Carlo (MC) simulations
to establish the characters of the transitions of this phase
diagram. Our simulations suggest that three of the critical
points are consistent with the central charge c=3/2 and one
with c=1.

In Sec. II we define the 2D FFXY model, and in Sec. 111
we describe the structure of the additional ground state. In
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Sec. IV we propose an order parameter associated with the
transition into the additional ground state. In Sec. V we give
the results for the various phase transitions obtained from
Monte Carlo simulations and determine the character of the
four multicritical points by invoking a relation between the
central charge c¢ and the bulk critical indices. In Sec. VI we
discuss the original 2D FFXY model in view of our results.
We also comment on related models not contained within the
class of fully frustrated XY model discussed in the present
investigation. Finally, some concluding remarks are given in
Sec. VII.

II. GENERALIZED FULLY FRUSTRATED XY MODEL

The Hamiltonian which defines the 2D fully frustrated
XY-class models on an L X L square lattice is given by

H:E U(¢ij50i_0j_Aij)s (1)
(ij)

with ¢;; € [-7, 7], where the sum is over nearest-neighbor
pairs. The phase angle 6; for the ith site at the lattice point
(x;,y;) satisfies the periodicity 6;,,¢= 6,,3=6;. The magnetic
bond angle A;; is defined as the line integral along the link
from i to j, i.e., A;;= (27/®() [{A - dl with the magnetic vec-
tor potential A for the uniform magnetic field B=BZ in the z
direction. With the Landau gauge taken, A;;=2mfx; for the
vertical link and A,-J:O for the horizontal one, where the
frustration parameter f measures the average number of flux
quanta per plaquette. The fully frustrated case corresponds to
f=1/2 with a half flux quantum per plaquette on the average.
The Boltzmann factor, which determines the thermodynamic
properties, is given by exp(—H/T) where T is the tempera-
ture. The interaction potential U(d)=U(¢p*2) is periodic
in 27 and is quadratic to lowest order in ¢ so that U(¢)
~ ¢*. These conditions for the interaction potential defines
the class; the members of this class are distinguished by the
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FIG. 1. (Color online) Interaction potentials U(¢) in Eq. (2) at
various values of p are compared in (a). The standard XY model
corresponding to p=1 is also compared with the Villain interaction
potential in (b). All interactions have the same symmetry and have
the identical quadratic form at small ¢.

explicit form of the interaction potential U(¢). If the relevant
symmetry class is U(1) ® Z,, then in principle three transi-
tions are possible: separate (1) and Z, transitions or a
merged U(1)®Z, transition. However, the number of al-
lowed phase transitions for the FFXY class is much larger."?
The implication is that by just changing the specific form of
U(¢) within the FEXY class, one could encounter a plethora
of phase transitions. In order to verify this, we choose a
parametrization of U(¢) and find the phase transitions corre-
sponding to this parametrization using Monte Carlo simula-
tion techniques. This strategy was employed earlier in Ref.
13. The parametrization is of the form U(¢) where!'*!>

U(p) = 1%{1 —0052”2<§)} (2)

and p=1 corresponds to the standard FEXY since 2[I
—cos’(¢p/2)]=1-cos(¢). The members of the FEXY class,
which belong to this parametrization, were in Ref. 13 termed
as the generalized fully frustrated XY (GFFXY) model. Fig-
ure 1(a) shows a sequence of interaction potentials U(¢).

To sum up, the 2D FEXY class that we discuss here is
obtained from the standard 2D FFXY by generalizing the
interaction potential within the allowed conditions: U(¢) is a
monotonously increasing function in the interval ¢ [0, 7],
and U(¢)=U(¢p=2m) is periodic in 27 and is quadratic to
lowest order in ¢ so that U(¢) ~ ¢*. The GFEXY model is by
construction contained within this class. The Villain interac-
tion is also contained in this class.® In Fig. 1(b) the interac-
tion potential for the standard XY model U(¢)=1-cos(¢) is
compared to the one for the Villain model at the KT transi-
tion (T=0.45) U(¢p)=—T In{Z'=" exp[—(¢p-2mmn)*/2T]}.1"
The 2D FFXY model with the Villain interaction has the
same phase-transition scenario as the usual 2D FEXY model,
i.e.,, a U(1) KT transition followed by a Z, transition (still
extremely close together but a little less close than for the
standard 2D FFXY model).! Ts this true for all models within
the FEXY class? The answer is no.'? The reason is, according
to us, connected to the appearance of an additional ground
state.

III. GROUND STATE

Let us first consider the ground state for the standard 2D
FEXY model on a square lattice. The spin configuration cor-
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FIG. 2. Two groups of distinct ground states of the 2D GFFXY
model. (a) When p is smaller than p.(=1.3479), the gauge-invariant
phase difference ¢=/4 for all edges of a plaquette. (b) When
p>p., one edge has ¢= while all the other three have ¢=0. The
wiggled vertical lines denote the magnetic bond angles A;;=, ar-
rows indicate phase values, and = represent vortex charges.

responding to the ground-state checkerboard is given in Fig.
2(a)."! A square with (without) a flux quanta is denoted by +
(=). The arrows give the spin directions and the thick (thin)
links are the links with (without) magnetic bond angles 7 (0)
modulo 2. In this configuration all the links contribute the
same energy U(7) to the ground state. Thus the energy for
the four links constituting an elementary square is in this
configuration 4U(7). The broken symmetry of the free en-
ergy for T=0 is directly related to the fact that in order to
change + to — squares in Fig. 2(a), by continuously turning
the spin directions from one ground state to the other, an
increase in the energy is required by a finite amount for a
number of links. This required number of links goes to in-
finity with the size of the system; the two ground states are
separated by an infinite energy barrier in the thermodynamic
limit.

The crucial point in the present context is that the ground
state shown in Fig. 2(a) does not remain as the ground state
for all values of p. As p is increased, the maximum link
energy U(ar) decreases and at a particular value, p.> 1, the
ground state switches to the spin configuration shown in Fig.
2(b). The energy for the links around a square for this con-
figuration is given by U(m)+3U(0). The critical value p,. is
hence given by the condition U(m)+3U(0)=4U(7), leading
to the determination

_ In(3/4) _
Pe=N> In(cos(m/8)) 1.3479. )

The ground state for p>p, shown in Fig. 2(b) has the
property that an infinitesimal change of the middle spin is
enough to flip between the two checkerboard patterns
[switching between + and — in Fig. 2(b)]. Thus there is no
barrier between these two checkerboard patterns for p>p..
This means that the broken symmetry of the free energy
associated with the two possible checkerboard pattern states
is restored. However, there is a different infinite barrier be-
tween the two degenerate ground states on opposite sides of
p.; continuously turning the spins to change from the spin
configuration in Fig. 2(a) to the spin configuration in Fig.
2(b) requires an infinite energy.
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FIG. 3. (Color online) Phase diagram of the 2D GFFXY model
in the (p,T) plane. The staggered magnetization m and the helicity
modulus Y give us all four combinations, all of which are realized
in the phase diagram. The horizontal dotted line at p=1 corresponds
to the standard FFXY model which has two distinct and extremely
close transitions.

IV. ORDER PARAMETERS

In order to characterize the phase-transition properties of
the 2D GFFXY model, one needs to identify a set of order
parameters with which all possible transitions can be charac-
terized.

The checkerboard pattern is usually associated with a
Z,-chirality symmetry. For T=0 this symmetry is reflected in
the existence of two degenerate ground states (the two
checkerboards) separated by an infinite energy barrier. The
corresponding order parameter is related to the staggered
magnetization m defined as'”

12

1
m= EE (= 1), | ), (4)
=1

where (- --) is the ensemble average and the vorticity for the
Ith elementary plaquette at (x;,y;) is computed from s;
=(1/m)Z;jye1$;= = 1 with the sum taken counterclockwise
around the given plaquette. The corresponding broken sym-
metry is reflected in the following way: for any finite system
the quantity #Efjl(—l)xlmsl can, with finite probability, ac-
quire any value in the range [—1,1] allowed by the model.
However, in the thermodynamic limit L=% only values in
either the range [—1,0] or the range [0,1] can be acquired.

This means that the order parameter O:(#E,L:I(—l)"”yls,} in
the thermodynamic limit can only take on the two values
O= *=m. The probabilities for the two values are equal but
they are separated by an infinite free-energy barrier. This is
equivalent to saying that the order parameter O has a Z,
symmetry which is broken. In the broken-symmetry region
m # 0 whereas when the symmetry is unbroken m=0. Figure
3 shows the phase diagram in the (7,p) plane. As seen m
# 0 corresponds to a finite region of this plane.

For T=0 and p=p,, the two ground states in Figs. 2(a)
and 2(b) are degenerate and are separated by an infinite en-
ergy barrier. For 7> 0 this should instead take the form of an
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FIG. 4. Two checkerboard states with the boundary between
them (denoted by a thick dotted line). A kink exists where the
boundary makes a 90° turn, and the kink density n;, is measured by
Eq. (5). For the four plaquettes surrounded by thick full line, |s,|
=1, whereas all other four plaquettes have even number of vortices
and thus |s,|=0.

infinite free-energy barrier in the thermodynamic limit, sepa-
rating values that a local order parameter can acquire. To this
end one needs to identify an appropriate local order param-
eter. Such a possible order parameter is the defect density n;
defined by

n= _2|st| > &)

where the square lattice has been divided into Lf squares
numerated by 7 where each consists of four elementary
plaquettes. Here s, is the sum of the phase difference around
four-plaquettes s,= (1/m)Z;;,,¢;; which means that |5 can
be 0, 1, or 2. Thus the defect density can be described in the
following way: think of the elementary plaquettes as being
either black (s=1) or white (s=-1). There are always
equally many black and white squares. The defect density
measures the average difference in the number of white and
black squares contained in four-plaquettes. Obviously the
checkerboard ground state corresponds to a zero defect den-
sity n,=0. However, for a finite temperature the checker-
board ground state may contain a kink. This situation is il-
lustrated in Fig. 4, starting from a checkerboard pattern. The
thick dotted line is a boundary between the two possible
checkerboard patterns. The 90° turn of this line is associated
with a four-plaquette with s,=1 which is denoted as thick
solid line surrounding the four elementary plaquettes in Fig.
4. Thus a kink corresponds to a defect with |s|=1 according
to our definition. The defect density defined here can be re-
garded as a generalization of the kink concept since it does
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not rest on the possibility of uniquely identifying domain
boundaries. Thus the defect density remains as a well-
defined concept even when the checkerboard symmetry is
completely restored and m=0. The ground state shown in
Fig. 2(b) is an example of a situation when m=0 because
switching between + and — in Fig. 2(b) does not involve
passing any energy barrier. Thus the defect density remains
finite as T is lowered toward zero for any p>p. Conse-
quently, the ground state in Fig. 2(b) corresponds to a finite
defect density n;, > 0. It is also obvious that the defect density
is monotonously increasing with 7.

A phase transition associated with this order parameter is
signaled by either a discontinuous or a nonanalytical behav-
ior of n; as a function of T and p. The defect density makes
a discontinuous jump from zero to a finite value at p,. in the
limit of small temperatures, and these two values are sepa-
rated by an infinite energy barrier; the point (p,T)=(p,,0) is
the starting point of a phase-transition line (see Fig. 3). On
this phase-transition line the order parameter n; can only take
on two values. These two values are equally probable but are
separated by an infinite free-energy barrier. Thus the order
parameter n;, on this phase-transition line possesses a Z,
symmetry which is broken.

One should note that in the case of n; the infinite free-
energy barrier between two different but equally probable
values of n; only resides on well-defined lines in the (p,T)
plane, whereas the infinite barrier for the chirality transition
resides on an area of the (p,T) plane (see Fig. 3). Thus the
phase transition associated with the defect density n; is more
akin to a liquid-gas transition in the pressure temperature
plane; the order parameter is the density difference on the
two sides of the transition line and the infinite free-energy
barrier only exists precisely on the transition line.

The U(1) symmetry in 2D is at most “quasibroken” be-
cause of the Mermin-Wagner theorem.'® As a consequence
the corresponding phase transitions cannot be described by a
local order parameter. Instead the phase transitions can be
monitored by the increase in the free energy caused by a
uniform twist  of the spin angles across the system. Expand-
ing the free energy F(6) for small values of & to lowest
orders gives

& st

F(5)=YE+Y45. (6)
Here, Y is the helicity modulus. It is finite in the low-
temperature phase and zero in the high-temperature phase.'’
Y, is the fourth-order modulus and can be used to verify that
the helicity modulus Y makes a discontinuous jump to zero
at the transition.!® This discontinuous jump is a key charac-
teristics of the KT transition. !>

V. PHASE DIAGRAM AND PHASE TRANSITIONS

In Ref. 13 the phase transitions associated with the /(1)
symmetry and the Z,-chirality symmetry were investigated.
The corresponding phase diagram is reproduced in Fig. 3.
This phase diagram has four sectors corresponding to all four
possible combinations of transitions for a combined symme-
try U(1) ® Z,. The four sectors are characterized by the four
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FIG. 5. Magnified phase diagram near p.=~1.3479 (compare
with Fig. 5). There are in total four multicritical points termed as A,
B, C, and D (see text). The critical point D shown in the inset
occurs at much higher p and lower 7.

possible combinations (Y ,m)=(0,0), (0, #0), (#0,0), and
(#0, #0). The dashed horizontal line at p=1 in Fig. 3 cor-
responds to the usual FEXY model. In this case the phase
(Y #0,m=0) is not realized.'?

In the present paper we use all the three-order parameters
described in Sec. IV together with Monte Carlo simulations
in order to deduce the nature of the various phase bound-
aries.

Figure 5 gives a sketch of the resulting “horizontal” phase
boundary in Fig. 3. In this blown up scale one finds that it
has one maximum and one minimum as well as three multi-
critical points ending three distinct phase lines. The critical
points are denoted by A, B, and C. A fourth multicritical
point is found along the “vertical” phase line at much higher
p and lower T (see Figs. 3 and 5). Let us first consider the
phase boundary from 7=0 to the critical point A. Across
this first section of the phase boundary the phase transition
associated with the defect density n; is of the first order.
Figure 6(a) illustrates the discontinuous change in the defect
density n,. The defect-density histogram along this phase
line has two distinct values of equal probability which re-
main distinct in the large-L limit. An example is given in
Fig. 6(b). For a given temperature 7, the lower value cor-
responds to the low-p phase and the higher to the high-p
phase. As pointed out above, this is analogous to the density
for a liquid-gas transition. Note that for 7=0.1 the p value
for the first-order line is lower than p.(0). However, as T
is further increased, the p value for the first-order line
increases. Finally, at a critical temperature 7., the density
difference vanishes with increasing system size. This is the
signature of the critical point A which is hence the critical
point ending the first-order transition line for the defect
density. Thus the critical point A is analogous to the critical
point ending the first-order line for a gas-liquid transition.
Figure 6(c) shows the defect-density histogram close to the
critical point; at the critical point the free-energy barrier be-
tween the two phases is L independent. This means that the
ratio between the maximum and minimum in the kink-
density histogram should also be size independent, whereas
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FIG. 6. (Color online) (a) First-order transition of n; at 7=0.1.
(b) Two valued probability distribution P(n;) at the abrupt change
in (a). (c) P(ny) at the critical point A. The inset shows that the ratio
Prax/ Prin 18 to good approximation finite and independent of L. (d)
Finite size scaling, An,~L™#"7, is consistent with B/v=1/4. (e)
P(n;) for a large-p value above the critical point D. The figure
illustrates that P,/ Ppin— % with increasing system size. (f) He-
licity modulus transition at the same T and p as in (e), indicating a
joint first-order transition.

it increases (decreases) for lower (higher) temperatures.’!

This size-independence is fulfilled to a good approximation
of the T value in Fig. 6(c). At the critical point the
defect-density difference An; [the difference between the
two maxima in Fig. 6(c)] should vanish with size as An,
~L P21 The Any size scaling is shown in Fig. 6(d) and is
consistent with an exponent 3/ v=0.25. One can express this
exponent in terms of the central charge ¢ as B/v=c/4.2>%
The central charge c is coupled to the symmetry of the order
parameter. The defect density, the staggered magnetization,
and the magnetization for the 2D Ising model can all acquire
precisely two distinct values with equal probability separated
by an infinite energy barrier. The broken symmetry reflected
by these order parameters does hence have a Z, character,
and the phase transitions are Ising-type. The central charge is
c=1/2 for 2D Ising-type transitions. If the order parameter
on the other hand is a 2D vector then the symmetry is U(1)
(which means that the order parameter with equal probability
has the same magnitude at any direction, but all these possi-
bilities are separated by an infinite energy barrier) and the
central charge is c=1. Provided that our three-order param-
eters cover all possibilities, then a phase transition can a
priori be any combination of single and joint transitions in-
volving these order parameters and is hence contained within

charge can have the four values of c=1/2, 1, 3/2, and 2.
Here a Z, transition corresponds to c=1/2, an individual KT
transition or a combined Z, ® Z, transition corresponds to ¢
=1, the two possible combined (1) ® Z, transitions corre-
spond to ¢=3/2, and a combined U(1) ® Z, ® Z, corresponds
to ¢=2. These possibilities are tested in Fig. 6(d) and single
out c=1 or equivalently 8/v=1/4. This means that among
the four possible values only c=1 is consistent with the data.
As will be explained below, the helicity modulus remains
nonzero in this part of the phase diagram (compare to Fig. 3),
and consequently this suggests that the critical point A re-
flects a combined Z, ® Z, defect-density and chirality transi-
tions. The defect-density transition ends at the critical point
A; as T is increased the free-energy barrier vanishes in the
large-L limit. However, there is a second defect-density tran-
sition line for higher p values associated with a U(1)®Z,
combined KT and defect-density transition, as illustrated in
Figs. 6(e) and 6(f). This transition is first order for higher p
and ends at a critical point D; for a T higher than the critical
point D there is no defect-density transition, just as for the
case of the critical point A.

Figure 7(a) illustrates the chirality transition along the
same phase boundary. Up to the critical point A (see Fig. 5)
the transition is of first order [see Fig. 7(a)]. The chirality
transition cannot cease at the critical point A because for a
fixed T the free-energy barrier between the O= = |m| always
vanishes for a large enough p. There are then two possibili-
ties: it can continue alone as a Z, transition or it can combine
with the KT transition into a joint U(1) ® Z, transition. To
deduce which possibility is the correct one, we calculate the
size scaling of m~ L™ and decide which of the two pos-
sible symmetry-allowed values, B/v=c/4=1/8 or 3/8, is
consistent with the data. Here we use standard size scaling
and calculate m(T, p) for a fixed T for a sequence of p which
crosses the phase line. As seen in Fig. 7(b), a unique crossing
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FIG. 8. (Color online) (a) The helicity modulus, Y, across the
phase line below point A. The inset shows that the minimum of Y
remains finite with increasing size. (b) Y goes to zero for large sizes
between B and C. (c) Same as (b) at point C. (d) Size scaling
relation Y=L g{[(T-T.c)L""] with good collapse for v=0.77
(@=0.63 and T,~0.1675 are taken from Ref. 13).

point is to good approximation obtained for 8/ v=1/8. From
this we conclude that the chirality transition continues alone
from the critical point A as a Z, transition. However as we
further increase the temperature the character of the chirality
transition changes; using the same procedure we instead find
that the value B/v=3/8 is consistent with the data [see Fig.
7(c)]. This is consistent with a joint U(1) ® Z, KT-chirality
transition. As we increase T further we come to the critical
point C where the KT and chirality splits up into two sepa-
rate transitions.!> At this point it is possible to instead calcu-
late the size scaling for a fixed p. The advantage is that we
can use the standard size scaling form m=L"P"f(T
—T.c)L""]. This again shows that the value 8/v=3/8 is con-
sistent with the data. From this we deduce that there must
exist a critical point B between A and C where the chirality
transition merges with the KT transition.

Are these deductions consistent with the /(1) symmetry
and the helicity modulus? We argued above that the transi-
tion from T=0 to the critical point A is associated with the
Z,®Z, symmetry. This presumes that the (1) symmetry
remains quasibroken on both sides of the transition, or
equivalently, that the helicity modulus Y is finite on both
sides. This is illustrated in Fig. 8(a); the helicity modulus Y
has a minimum at the phase line. However, this minimum
remains nonzero in the large-L limit, as illustrated by the
inset of Fig. 8(a). Thus Y makes (at most) a finite jump at the
transition and the (1) symmetry remains quasibroken. Next
we argued that between the critical points B and C, the tran-
sition is a combined U(1) ® Z,-KT-chirality transition. This
means that the helicity modulus must now vanish at the tran-
sition. This is illustrated in Fig. 8(b), which shows that the Y
minimum now vanishes in the large-L limit [compare inset of
Fig. 8(b)]. Figure 8(c) shows the same construction close to
the critical point C. The fact that Y vanishes as a power law
can be verified for the critical point C by instead varying T
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for fixed p. In these variables the critical point C obeys a
standard scaling relation Y=L “g{[(T—T.c)L""] which con-
firms the power-law decay of Y, as opposed to the KT-
universal jump signaling the isolated /(1) transition for the
XY model [see Fig. 8(d)]."> We also note that the obtained
critical index v=0.77 is consistent with the data for m in
Fig. 7(d). It is also possible to use the fourth-order helicity
modulus Y, to determine the character of the (1)
transition.'® In Ref. 13 it was found from the Y, data that in
the interval 1.346=p=1.35, the character of the /(1) tran-
sition was consistent with a transition without a discontinu-
ous jump in the helicity modulus Y. This is consistent with a
combined U(1)®Z, transition between the multicritical
points B and C.

The following picture emerges: A and D end two first-
order phase lines. A is associated with a Z,® Z, transition
with a central charge of ¢c=1 and D with a U(1) ® Z, transi-
tion with ¢=3/2. B and C are both associated with /(1)
®Z, transitions and ¢=3/2 but are not end points of first-
order lines.

VI. STANDARD 2D FFXY MODEL

The usual 2D FFXY model corresponds to the p=1 line in
Fig. 3. The critical point C for the 2D FFXY class is the
closest multicritical point to the actual phase transitions of
the usual 2D FFXY model (compare to Fig. 5). The critical
point C is characterized by the critical index = 0.77 and the
central charge c=1.5. A single Z, transition is characterized
by v=1 and ¢=0.5. In all the earlier papers, in which it was
putatively concluded that the 2D FFXY model has a joint
transition, the apparent value of v was in the interval 0.77
<w<1 (see Table I in Ref. 1). In particular in Ref. 5 the
values of v and ¢ were independently determined and were
given by v=0.80(4) and ¢=1.61(3). Thus the apparent mul-
ticritical point for the usual FFXY model appeared to have
critical properties inconsistent with a single Z, transition and
with critical v values in between a single Z, transition and
the real U(1)® Z, multicritical point C for the 2D FFXY
class. Furthermore, the closeness of the v and ¢ values [v
~0.77 and c=1.5 for C, respectively, »=0.80(4) and ¢
=1.61(3) obtained for the usual FEXY model in Ref. 5] sug-
gests that the putative multicritical point found for the 2D
FFXY model is an artifact of the closeness to the real critical
point C for the 2D FFXY class.

The present consensus is that the 2D FFXY model under-
goes two separate transitions, a KT transition at Tk followed
by a Z, transition at TZ2 with Tgr< T22.1 In particular Kor-
shunov in Ref. 8 gave a general argument which purportedly
states that Tt < TZ2 should be true not only for the 2D FEXY
model but also for the 2D FFXY class studied in the present
work, provided that the interaction is such that its ground
state is the broken-symmetry checkerboard state. This is in
contradiction with the existence of the multicritical point C
at p<p, (compare to Fig. 5) which corresponds to an inter-
action potential with a checkerboard ground state. We sug-
gest that the reason for this fallacy of the argument is con-
nected to the closeness to the (m,Y)=(0, # 0) phase.

The most striking feature of the phase transition for 2D
FEXY model is the closeness between Tyxr and Tz, The
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phase diagram in Fig. 5 gives a scenario for which this fea-
ture becomes less surprising. The point is that the chirality
and the KT transitions merge and cross as a function of p for
the 2D GFEXY model. It then becomes more natural that for
some values of p, the transitions can be extremely close. The
value p=1, which corresponds to the usual FEXY model,
happens to be such a value.

There are many other (1) ® Z, models related to the 2D
FFXY model.! Although, our results only pertain to the 2D
FEXY class defined in this paper, we note that to our knowl-
edge, none of the phase diagrams for related models contains
a crossing of the KT and an Ising-type transition. In a vast
majority, the KT transition is always at lower temperature
than the Ising-type transition or possibly merged. However,
in the model in Ref. 24 the situation is reversed with the
Ising-type transition below or merging with the KT transi-
tion. Also in this case a crossing is lacking. Because there is
no crossing it is notoriously difficult to assert whether a
merging takes place or the two transitions are only extremely
close.! For example, the Ising-XY model was in Refs. 2, 4,
and 12 found to contain such a line of merged transitions.
However, more careful MC simulations in fact suggest that
the transitions are extremely close but never merge along this
line." The point to note is that for our 2D GFFXY model the
transitions cross, from which it directly follows that a real
merging exists in this case. We believe that this crossing is
intimately related to the appearance of the additional ground
state.

VII. FINAL REMARKS

To sum up, we have found that the description of the
phase diagram for the 2D FFXY class of models requires at
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least three distinct order parameters consistent with the pro-
posed designation U(1) ® Z, ® Z,. In addition to the usual KT
U(1) transition and the chirality Z, transition, there is also a
defect-density transition with Ising-type Z, character. Within
our simple parametrization of the interaction U(¢), we have
found that all combinations of transitions can be realized
except for two: the single Z,-defect transition and the fully
combined U(1)®Z,® Z, transition. All the others are real-
ized, i.e., the single Z,-chirality transition, the single /(1)
KT transition, the combined Z,-defect and Z,-chirality tran-
sitions, the combined Z, chirality and (1) KT, and the com-
bined Z,-defect and the 2(1) KT transitions. Since the
GFFEXY model is a subclass of the 2D FEXY class this means
that at least five of the symmetry-allowed transitions can be
realized. What about the remaining two? Here we speculate
that a single Z, density transition will hardly be realized
because it couples too strongly to the other transitions. How-
ever, one might imagine that there exists a potential U(¢) for
which the two nearby critical points A and B are merged.
This critical point would then correspond to a merged U(1)
® Z,® Z, transition with central charge c=2.

We also note that Cristofano et al. in Ref. 25 argued from
general symmetry considerations that the full symmetry of
the FFXY model allows for U(1) ® Z,® Z,. The present re-
sults for the phase diagram of the 2D GFFXY model support
this designation.
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